问题
填空题
设函数f(x)=cos(x+
|
答案
∵f(x)=cos(x+
)+2cos22π 3
=cosx•cosx 2
-sinxsin2π 3
+cosx+1=2π 3
cosx-1 2
sinx+1=sin(x+3 2
)+1,5π 6
由于-1≤sin(x+
)≤1,∴0≤sin(x+5π 6
)+1≤2,故函数 f(x)的值域为[0,2],5π 6
故答案为[0,2].
设函数f(x)=cos(x+
|
∵f(x)=cos(x+
)+2cos22π 3
=cosx•cosx 2
-sinxsin2π 3
+cosx+1=2π 3
cosx-1 2
sinx+1=sin(x+3 2
)+1,5π 6
由于-1≤sin(x+
)≤1,∴0≤sin(x+5π 6
)+1≤2,故函数 f(x)的值域为[0,2],5π 6
故答案为[0,2].