问题
解答题
已知函数f(x)=ax2+bx+1(a,b为实数,a≠0,x∈R). (Ⅰ)当函数f(x)的图象过点(-1,0),且方程f(x)=0有且只有一个根,求f(x)的表达式; (Ⅱ)在(Ⅰ)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围; (Ⅲ)若F(x)=
|
答案
(Ⅰ)因为f(-1)=0,所以a-b+1=0.(1分)
因为方程f(x)=0有且只有一个根,所以△=b2-4a=0.
所以b2-4(b-1)=0.即b=2,a=1.(3分)
所以f(x)=(x+1)2.(4分)
(Ⅱ)因为g(x)=f(x)-kx=x2+2x+1-kx=x2-(k-2)x+1
=(x-
)2+1-k-2 2
.(6分)(k-2)2 4
所以当
≥2或k-2 2
≤-2时,k-2 2
即k≥6或k≤-2时,g(x)是单调函数.(9分)
(Ⅲ)f(x)为偶函数,所以b=0.所以f(x)=ax2+1.
所以F(x)=
(10分)ax2+1x>0 -ax2-1x<0.
因为mn<0,不妨设m>0,则n<0.
又因为m+n>0,所以m>-n>0.
所以|m|>|-n|.(12分)
此时F(m)+F(n)=f(m)-f(n)=am2+1-an2-1=a(m2-n2)>0.
所以F(m)+F(n)>0.(14分)