问题
解答题
设△ABC的内角A,B,C的对边分别为a,b,c.已知b2+c2=a2+
(Ⅰ)A的大小; (Ⅱ)2sinBcosC-sin(B-C)的值. |
答案
(Ⅰ)由余弦定理,a2=b2+c2-2bccosA,
故cosA=
=b2+c2-a2 2bc
=
bc3 2bc
,3 2
所以A=
.π 6
(Ⅱ)2sinBcosC-sin(B-C)
=2sinBcosC-(sinBcosC-cosBsinC)
=sinBcosC+cosBsinC
=sin(B+C)
=sin(π-A)
=sinA=
.1 2