问题
解答题
已知向量
(1)若
(2)记f(x)=
|
答案
(1)
•m
=2n
sin3
cosx 4
+2cos2x 4
=x 4
sin3
+cosx 2
+1x 2
=2sin(
+x 2
)+1.π 6
∵
•m
=2n
∴sin(
+x 2
)=π 6
.1 2
cos(x+
)=1-2sin2(π 3
+x 2
)=π 6
.1 2
(2)∵(2a-c)cosB=bcosC,
由正弦定理得(2sinA-sinC)cosB=sinBcosC,
∴2sinAcosB-sinCcosB=sinBcosC,
∴2sinAcosB=sin(B+C).
∵A+B+C=π,∴sin(B+C)sinA,且sinA≠0,
∴cosB=
,B=1 2
,π 3
∴0<A<
.∴2π 3
<π 6
+A 2
<π 6
,π 2
<sin(1 2
+A 2
) <1π 6
又∵f(x)=
•m
=2sin(n
+x 2
)+1,∴f(A)=2sin(π 6
+A 2
)+1π 6
故f(A)的取值范围是(2,3)