问题 解答题
已知向量
m
=(2
3
sin
x
4
,2),
n
=(cos
x
4
,cos2
x
4
)

(1)若
m
n
=2
,求cos(x+
π
3
)
的值;
(2)记f(x)=
m
n
,在△ABC中,角A、B、C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求f(A)的取值范围.
答案

(1)

m
n
=2
3
sin
x
4
cos
x
4
+2cos2
x
4
=
3
sin
x
2
+cos
x
2
+1

=2sin(

x
2
+
π
6
)+1.

m
n
=2

∴sin(

x
2
+
π
6
)=
1
2

cos(x+

π
3
)=1-2sin2
x
2
+
π
6
)=
1
2

(2)∵(2a-c)cosB=bcosC,

由正弦定理得(2sinA-sinC)cosB=sinBcosC,

∴2sinAcosB-sinCcosB=sinBcosC,

∴2sinAcosB=sin(B+C).

∵A+B+C=π,∴sin(B+C)sinA,且sinA≠0,

∴cosB=

1
2
,B=
π
3

∴0<A<

3
.∴
π
6
A
2
+
π
6
π
2
1
2
<sin(
A
2
+
π
6
)  <1

又∵f(x)=

m
n
=2sin(
x
2
+
π
6
)+1
,∴f(A)=2sin(
A
2
+
π
6
)+1

故f(A)的取值范围是(2,3)

填空题
单项选择题 B型题