问题 填空题
过坐标原点且与圆x2+y2-4x+2y+
5
2
=0
相切的直线的方程为 ______.
答案

把圆的方程化为标准式方程得:(x-2)2+(y+1)2=

5
2
,所以圆心(2,-1),半径r=
10
2

设切线方程的斜率为k,则切线方程为y=kx,

则圆心到直线的距离d=

|2k+1|
1+k2
=r=
10
2
,两边平方得:2(2k+1)2=5(1+k2),解得k=-3或k=
1
3

所以所求的切线方程为:y=-3x或y=-

1
3
x

故答案为:y=-3x,y=-

1
3
x

多项选择题
单项选择题