问题
选择题
定义在R上的增函数f(x),若对任意的t∈R,都有f(-1+t)+f(-1-t)=2,当m+n<-2时,有( )
A.f(m+n)>1
B.f(m+n)<1
C.f(m)+f(n)>2
D.f(m)+f(n)<2
答案
因为任意的t∈R,都有f(-1+t)+f(-1-t)=2,
当t=0,得f(-1)=1,
因为在R上的增函数f(x),m+n<-2,
所以f(m+n)<f(-2),
又f(-2)<f(-1)=1,
所以f(m+n)<1.
故选B.