问题
解答题
在△ABC中,角A、B、C的对边分别为a、b、c,若B=60°,且cosA=
(1)求cosC的值; (2)若a=5,求△ABC的面积. |
答案
(1)∵cosA=-cos(B+C)=
,∴cos(B+C)=-11 14
,11 14
∴sin(B+C)=
=1-cos2(B+C)
,又B=60°,5 3 14
则cosC=cos[(B+C)-B]=cos(B+C)cosB+sin(B+C)sinB=-
×11 14
+1 2
×5 3 14
=3 2
;1 7
(2)由(1)可得sinC=
=1-cos2C
,4 3 7
∵a=5,sinA=
=1-cos2A
,5 3 14
∴由正弦定理
=a sinA
=b sinB
=c sinC
=5 5 3 14
,14 3 3
∴c=
×14 3 3
=8,b=4 3 7
×14 3 3
=7,3 2
则S=
bcsinA=141 2
.3