问题
解答题
在△ABC中,角A,B,C的对边分别为a,b,c,已知cosA=
(1)求sinC的值; (2)求sin(2A+C)的值; (3)若△ABC的面积S=
|
答案
(1)∵a2=b2+c2-2bccosA=26c2-10c2×
=18c2,4 5
∴a=3
c.2
∵cosA=
,0<A<π,∴sinA=4 5
.3 5
∵
=a sinA
,c sinC
∴sinC=
=csinA a
=c× 3 5 3
c2
;2 10
(2)∵c<a,∴C为锐角,
∴cosC=
=1-sin2C
.7 2 10
∵sin2A=2sinAcosA=2×
×3 5
=4 5
,24 25
cos2A=2cos2A-1=2×
-1=16 25
,7 25
∴sin(2A+C)=sin2AcosC+cos2AsinC
=
×24 25
+7 2 10
×7 25
=2 10
;7 2 10
(3)∵b=5c,∴
=sinB sinC
=5,sinB=5sinC.b c
∴
sinBsinC=3 2
sin2C=15 2
.3 20
又∵S=
bcsinA=1 2
c2=3 2
,a2 12
∴
=a2 12
,3 20
∴a=
.3 5 5