问题
填空题
过圆x2+y2=4外一点P(2,1)引圆的切线,则切线的方程为______.
答案
由圆x2+y2=4,得到圆心坐标为(0,0),半径r=2,
当过P的切线方程斜率不存在时,显然x=2为圆的切线;
当过P的切线方程斜率存在时,
设斜率为k,P(2,1),
∴切线方程为y-1=k(x-2),即kx-y-2k+1=0,
∵圆心到切线的距离d=
=r=2,|1-2k| k2+1
解得:k=-
,3 4
此时切线方程为3x+4y-10=0,
综上,切线方程为x=2或3x+4y-10=0.
故答案为:x=2或3x+4y-10=0