问题 填空题

过(2,3)点且与圆(x-1)2+y2=1相切的直线方程______.

答案

当切线的斜率不存在时,切线的方程为 x=2,

当切线的斜率存在时,设切线的斜率为  k,

则切线的方程为 y-3=k(x-2),即 kx-y+3-2k=0,

由圆心(1,0)到切线的距离等于半径得

|k-0+3-2k|
1+k2
=1

∴k=

4
3
,此切线的方程 4x-3y+1=0,

综上,圆的切线方程为  x=2或4x-3y+1=0,

故答案为:x=2或4x-3y+1=0.

单项选择题
单项选择题