问题 解答题

如图,在四边形ABCD中,ADBC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.

求证:(1)FC=AD;

(2)AB=BC+AD.

答案

证明:(1)∵ADBC(已知),

∴∠ADC=∠ECF(两直线平行,内错角相等),

∵E是CD的中点(已知),

∴DE=EC(中点的定义).

∵在△ADE与△FCE中,

∠ADC=∠ECF
DE=EC
∠AED=∠CEF

∴△ADE≌△FCE(ASA),

∴FC=AD(全等三角形的性质).

(2)∵△ADE≌△FCE,

∴AE=EF,AD=CF(全等三角形的对应边相等),

∴BE是线段AF的垂直平分线,

∴AB=BF=BC+CF,

∵AD=CF(已证),

∴AB=BC+AD(等量代换).

多项选择题
问答题 简答题