问题
解答题
已知圆C:(x-3)2+(y-4)2=4,
(Ⅰ)若直线l1过定点A(1,0),且与圆C相切,求l1的方程;
(Ⅱ)若圆D的半径为3,圆心在直线l2:x+y-2=0上,且与圆C外切,求圆D的方程。
答案
解:(Ⅰ)①若直线l1的斜率不存在,即直线是x=1,符合题意;
②若直线l1斜率存在,
设直线l1为y=k(x-1),即kx-y-k=0,
由题意知,圆心(3,4)到已知直线l1的距离等于半径2,
即,解之得
,
所求直线方程是x=1,3x-4y-3=0。
(Ⅱ)依题意设D(a,2-a),
又已知圆的圆心C(3,4),r=2,
由两圆外切,可知CD=5,
∴可知=5,解得a=3或a=-2,
∴D(3,-1)或D(-2,4),
∴所求圆的方程为。