(1)△ABC中,证明:sin2A=sin2B+sin2C-2sinBsinCcosA
(2)计算:sin217°+cos247°+sin17°cos47°.
(1)△ABC中,根据余弦定理,得a2=b2+c2-2bccosA…(*)
又∵
=a sinA
=b sinB
=2R(R是外接圆半径)c sinC
∴a=2RsinA,b=2RsinB,c=2RsinC
代入(*)式,得4R2sin2A=4R2sin2B+4R2sin2C-2•2RsinB•2RsinCcosA
两边约去4R2,得sin2A=sin2B+sin2C-2sinBsinCcosA,原等式成立.
(2)∵cos47°=cos(90°-43°)=sin43°
∴sin217°+cos247°+sin17°cos47°=sin217°+sin243°+sin17°sin43°
设△ABC中,B=17°,C=43°,则A=180°-(17°+43°)=120°
由(1)得:sin2A=sin2B+sin2C-2sinBsinCcosA,
即sin2120°=sin217°+sin243°-2sin17°sin43°cos120°=sin217°+sin243°+sin17°sin43°
∴sin217°+sin243°+sin17°sin43°=sin2120°=(
)2=3 2 3 4
即sin217°+cos247°+sin17°cos47°=
.3 4