问题
解答题
已知x,y≠kπ+
求证:(1)cos2x=
|
答案
证明:(1)∵sinθ与cosθ的等差中项是sinx,等比中项是siny,
∴sinθ+cosθ=2sinx①,sinθcosθ=sin2y②,
①2-②×2,可得(sinθ+cosθ)2-2sinθcosθ=4sin2x-2sin2y,即4sin2x-2sin2y=1.
∴4×
-2×1-cos2x 2
=1,即2-2cos2x-(1-cos2y)=1.1-cos2y 2
故证得cos2x=
cos2y;1 2
(2)要证
=2(1-tan2x) 1+tan2x
,只需证1-tan2y 1+tan2y
=1- sin2x cos2x 1+ sin2x cos2x
,1- sin2y cos2y 2(1+
)sin2y cos2y
即证
=cos2x-sin2x cos2x+sin2x
,即证cos2x-sin2x=cos2y-sin2y 2(cos2y+sin2y)
(cos2y-sin2y),只需证cos2x=1 2
cos2y.1 2
由(1)的结论,cos2x=
cos2y显然成立.1 2
所以
=2(1-tan2x) 1+tan2x
.1-tan2y 1+tan2y