问题
填空题
函数f(x)=sin2x-
|
答案
sin2x-
cos2x3
=2(
sin2x-1 2
cos2x)3 2
=2(cos
sin2x-sinπ 3
cos2x)π 3
=2sin(2x-
)π 3
∴y=2sin(2x-
)π 3
∵2kπ-
≤当2x-π 2
≤2kπ+π 3
(k∈Z),即kπ-π 2
≤x≤kπ+π 12
(k∈Z)时,5π 12
函数y=2sin(2x-
)单调递增.π 3
∴函数f(x)=sin2x-
cos2x的单调递增区间为[-3
+kπ,π 12
+kπ],k∈Z5π 12
故答案为:[-
+kπ,π 12
+kπ],k∈Z5π 12