问题
填空题
已知sin(
|
答案
∵0<α<
,∴-π 2
<π 4
-α<π 4 π 4
∵sin(
-α)=π 4
,∴cos(2 10
-α)=π 4 7 2 10
∴cosα=cos[
-(π 4
-α)]=cosπ 4
cos(π 4
-α)+sinπ 4
sin(π 4
-α)=π 4
×2 2
+7 2 10
×2 2
=2 10 4 5
故答案为:4 5
已知sin(
|
∵0<α<
,∴-π 2
<π 4
-α<π 4 π 4
∵sin(
-α)=π 4
,∴cos(2 10
-α)=π 4 7 2 10
∴cosα=cos[
-(π 4
-α)]=cosπ 4
cos(π 4
-α)+sinπ 4
sin(π 4
-α)=π 4
×2 2
+7 2 10
×2 2
=2 10 4 5
故答案为:4 5