问题 解答题
在△ABC中,角A、B、C的 对边分别为a、b、c,且cos2C=1-
8b2
a2

(1)求
1
tanA
+
1
tanC
的值;
(2)若tanB=
8
15
,求tanA及tanC的值.
答案

(1)∵cos2C=1-

8b2
a2
,cos2C=1-2sin2C,

sin2C=

4b2
a2

∵C为三角形内角,∴sinC>0,

sinC=

2b
a

a
sinA
=
b
sinB
,∴
b
a
=
sinB
sinA

∴sinC=

2sinB
sinA
,即2sinB=sinAsinC,

∵A+B+C=π,

∴sinB=sin(A+C)=sinAcosC+cosAsinC,

∴2sinAcosC+2cosAsinC=sinAsinC,

∵sinA•sinC≠0,

1
tanA
+
1
tanC
=
1
2

(2)∵

1
tanA
+
1
tanC
=
1
2

tanA=

2tanC
tanC-2

∵A+B+C=π,

tanB=-tan(A+C)=-

tanA+tanC
1-tanAtanC
=
tan2C
2tan2C-tanC+2

8
15
=
tan2C
2tan2C-tanC+2

整理得tan2C-tanC+16=0,

解得:tanC=4,

将tanC=4代入得:tanA=

2tanC
tanC-2
=4.

单项选择题 A1/A2型题
选择题