问题 选择题
已知O是锐角三角形△ABC的外接圆的圆心,且∠A=θ,若
cosB
sinC
AB
+
cosC
sinB
AC
=2m
AO
,则m=(  )
A.sinθB.cosθC.tanθD.不能确定
答案

设外接圆半径为R,则:

cosB
sinC
AB
+
cosC
sinB
AC
=2m
AO
 可化为:

cosB
sinC
•(
OB
-
OA
)+
cosC
sinB
 •(
OC
-
OA
)=2m•
AO
  (*).

易知

OA
OB
的夹角为2∠C,
OC
OA
的夹角为2∠B,
OA
OA
的夹角为0,

|

OA
|=|
OB
|=|
OC
|=R.

则对(*)式左右分别与

OA
作数量积,可得:

cosB
sinC
OA
OB
-
cosB
sinC
OA
2
+
cosC
sinB
 •
OC
OA
-
cosC
sinB
 
OA
2
=-2m
OA
2

cosB
sinC
• R2 (cos2C-1)+
cosC
sinB
•R2(cos2B-1)=-2mR2

∴-2sinCcosB+(-2sinBcosC)=-2m,∴sinCcosB+sinBcosC=m,即 sin(B+C)=m.

因为sinA=sin[π-(B+C)]=sin(B+C)且∠A=θ,

所以,m=sinA=sinθ,

故选A.

单项选择题
多项选择题