问题
填空题
已知sinαcosβ=1,则cos(α+β)= .
答案
0.
:由于|sinα|≤1,|cosβ|≤1,现sinαcosβ=1,故sinα=1,cosβ=1或sinα=-1,cosβ=-1,∴ α=2kπ+,β=2lπ或α=2kπ-,β=2lπ+πÞα+β=2(k+l)π+(k,l∈Z).
∴ cos(α+β)=0.
已知sinαcosβ=1,则cos(α+β)= .
0.
:由于|sinα|≤1,|cosβ|≤1,现sinαcosβ=1,故sinα=1,cosβ=1或sinα=-1,cosβ=-1,∴ α=2kπ+,β=2lπ或α=2kπ-,β=2lπ+πÞα+β=2(k+l)π+(k,l∈Z).
∴ cos(α+β)=0.