问题
填空题
已知实数a,b同时满足a2+b2-11=0,a2-5b-5=0,则b=______.
答案
∵a2+b2-11=0,-----①
a2-5b-5=0,----②;
由①得,a2=-b2+11=0
代入②得,b2+5b-6=0
解得b=1或b=-6
当b=1时,代入①得a2=10,a=±10
b=-6时,代入①得a2+36-11=0,a2=-25(舍去).
故b=1.
已知实数a,b同时满足a2+b2-11=0,a2-5b-5=0,则b=______.
∵a2+b2-11=0,-----①
a2-5b-5=0,----②;
由①得,a2=-b2+11=0
代入②得,b2+5b-6=0
解得b=1或b=-6
当b=1时,代入①得a2=10,a=±10
b=-6时,代入①得a2+36-11=0,a2=-25(舍去).
故b=1.