问题 解答题

已知圆c关于y轴对称,经过抛物线y2=4x的焦点,且被直线y=x分成两段弧长之比为1:2,求圆c的方程.

答案

设圆C的方程为x2+(y-a)2=r2

∵抛物线y2=4x的焦点F(1,0)

∴1+a2=r2

又直线y=x分圆的两段弧长之比为1:2,

可知圆心到直线y=x的距离等于半径的

1
2

|a|
2
=
|r|
2
    ②

解①、②得a=±1,r2=2 

∴所求圆的方程为x2+(y±1)2=2

选择题
实验题