一个圆切直线l1:x-6y-10=0于点P(4,-1),且圆心在直线l2:5x-3y=0上,求该圆的方程.
过点P(4,-1)且与直线l1:x-6y-10=0垂直的直线的方程设为 6x+y+C=0,
点P的坐标代入得C=-23,即6x+y-23=0.
设所求圆的圆心为为M(a,b),由于所求圆切直线l1:x-6y-10=0于点P(4,-1),
则满足6a+b-23=0①;又由题设圆心M在直线l2:5x-3y=0上,
则5a-3b=0②.
联立①②解得a=3,b=5.即圆心M(3,5),因此半径r=PM=
=(4-3)2+(-1-5)2
,37
所求圆的方程为(x-3)2+(y-5)2=37.