问题
解答题
已知函数f(x)=sin
(1)写出f(x)的最小正周期以及单调区间; (2)若函数h(x)=cos(x+
|
答案
(1)f(x)=
sinx+1 2
cosx=1 2
sin(x+2 2
),π 4
∵ω=1,∴T=2π;
令-
+2kπ≤x+π 2
≤π 4
+2kπ,k∈Z,解得:-π 2
+2kπ≤x≤3π 4
+2kπ,k∈Z,π 4
令
+2kπ≤x+π 2
≤π 4
+2kπ,k∈Z,解得:3π 2
+2kπ≤x+π 4
≤π 4
+2kπ,k∈Z,5π 4
则f(x)的单调递增区间为[-
+2kπ,3π 4
+2kπ],k∈Z;单调递减区间为[π 4
+2kπ,π 4
+2kπ],k∈Z;5π 4
(2)∵f(x)•h(x)=
sin(x+2 2
)cos(x+π 4
)5π 4
=-
sin(x+2 2
)cos(x+π 4
)=-π 4
sin(2x+2 4
)=-π 2
cos2x,2 4
∴y=log2(f(x)•h(x))=log2(-
cos2x),2 4
∴ymax=log2
=-2 4
,3 2
当cos2x=-1,即x={x|x=
+kπ,k∈Z}时,y取得最大值.π 2