问题
解答题
已知圆C1的方程为x2+y2-4x+2my+2m2-2m+1=0.
(1)求实数m的取值范围;
(2)求当圆的面积最大时圆C1的标准方程;
(3)求(2)中求得的圆C1关于直线l:x-y+1=0对称的圆C2的方程.
答案
(1)由题意,得:D2+E2-4F=16+4m2-4(2m2-2m+1)>0,
即m2-2m-3<0,∴(m-3)(m+1)<0,∴-1<m<3,
故所求实数m的范围是-1<m<3.
(2)圆的面积最大,即圆的半径最大.
圆的半径r=1 2
=D2+E2-4F 1 2
=-4m2+8m+12
,-m2+2m+3
∴r=
,因此当m=1时圆的半径最大,且为2,-(m-1)2+4
所以圆C1的方程为x2+y2-4x+2y+1=0,标准方程为(x-2)2+(y+1)2=4.
(3)由(2)可得圆C1的圆心坐标为(2,-1)、半径等于2,设圆C2的坐标为(a,b),
则C1C2的中点为(
,a+2 2
),且C1C2的斜率为 k=b-1 2
.b+1 a-2
由题意可得,直线l垂直平分线段C1C2,∴
,解得
- a+2 2
+1 =0b-1 2
=-1b+1 a-2
.a=-2 b=3
故所求的圆C2的方程为 (x+2)2+(y-3)2=4.