问题
填空题
以抛物线y2=4x的焦点为圆心,半径为2的圆的标准方程为______.
答案
由抛物线y2=4x,得到p=2,
∴抛物线的焦点坐标为(1,0),
∴圆心坐标为(1,0),又圆的半径为2,
则所求圆的标准方程为:(x-1)2+y2=4.
故答案为:(x-1)2+y2=4.
以抛物线y2=4x的焦点为圆心,半径为2的圆的标准方程为______.
由抛物线y2=4x,得到p=2,
∴抛物线的焦点坐标为(1,0),
∴圆心坐标为(1,0),又圆的半径为2,
则所求圆的标准方程为:(x-1)2+y2=4.
故答案为:(x-1)2+y2=4.