问题
解答题
已知奇函数f(x)在定义域[-3,3]上是减函数,且满足f(a2-2a)+f(2-a)<0,求实数a的取值范围.
答案
由f(a2-2a)+f(2-a)<0,得f(a2-2a)<-f(2-a)
∵f(x)是奇函数,∴-f(2-a)=f(a-2).
于是f(a2-2a)<f(a-2).
又由于f(x)在[-3,3]上是减函数,
因此
,a2-2a>a-2 a2-2a≤3 a -2≥-3
解得-1≤a<1或2<a≤3.