已知函数f(x)=2cos2
(1)求函数f(x)的最小正周期和值域; (2)若x∈(
|
(1)∵f(x)=cosx+sinx=
cos(x-2
),π 4
∴函数f(x)的周期为2π,
又∵-1≤cos(x-
)≤1,π 4
则函数f(x)的值域为[-
,2
];2
(2)∵f(x)=
cos(x-2
)=π 4
,1 5
∴cos(x-
)=π 4
,2 10
∵x∈(
,π 2
),∴x-3π 4
∈(π 4
,π 4
),π 2
∴sin(x-
)=π 4
=1-cos2(x-
)π 4
,7 2 10
则sinx=sin[(x-
)+π 4
]=sin(x-π 4
)cos+cos(x-π 4
)sinπ 4 π 4
=
×7 2 10
+2 2
×2 10
=2 2
.4 5