问题 解答题
(1)证明:cos(α-β)=cosα•cosβ+sinα•sinβ
(2)若0<α<
π
2
-
π
2
<β<0
cos(
π
4
+α)=
1
3
cos(
π
4
-
β
2
)=
3
3
,求cos(α+
β
2
)
的值.
答案

(1)证明:在平面直角坐标系xOy内作单位圆O,

以Ox为始边作角α,β,它们的终边与单位圆O的交点分别为A,B.

OA
=(cosα,sinα),
OB
=(cosβ,sinβ)

OA
OB
=cosαcosβ+sinαsinβ.

OA
OB
的夹角为θ,则
OA
OB
=|
OA
||
OB
|
cosθ=cosθ=cosαcosβ+sinαsinβ.

另一方面,由α=2kπ+β+θ,或α=2kπ+β-θ.

∴α-β=2kπ±θ,k∈Z.

∴cos(α-β)=cosθ.

∴cos(α-β)=cosαcosβ+sinαsinβ.

(2)∵0<α<

π
2
cos(
π
4
+α)=
1
3
,∴
π
4
<α+
π
4
π
2
,∴sin(α+
π
4
)
=
1-cos2(α+
π
4
)
=
2
2
3

-

π
2
<β<0,∴
π
4
π
4
-β<
4
,∵cos(
π
4
-
β
2
)=
3
3
,∴sin(
π
4
-
β
2
)
=
1-cos2(
π
4
-
β
2
)
=
6
3

cos(α+

β
2
)=cos[(
π
4
+α)-(
π
4
-
β
2
)]
=cos(
π
4
+α)cos(
π
4
-
β
2
)
+sin(
π
4
+α)sin(
π
4
-
β
2
)

=

1
3
×
3
3
+
2
2
3
×
6
3

=

5
3
9

综合题
单项选择题