(1)证明:cos(α-β)=cosα•cosβ+sinα•sinβ (2)若0<α<
|
(1)证明:在平面直角坐标系xOy内作单位圆O,
以Ox为始边作角α,β,它们的终边与单位圆O的交点分别为A,B.
则
=(cosα,sinα),OA
=(cosβ,sinβ).OB
则
•OA
=cosαcosβ+sinαsinβ.OB
设
与OA
的夹角为θ,则OB
•OA
=|OB
||OA
|cosθ=cosθ=cosαcosβ+sinαsinβ.OB
另一方面,由α=2kπ+β+θ,或α=2kπ+β-θ.
∴α-β=2kπ±θ,k∈Z.
∴cos(α-β)=cosθ.
∴cos(α-β)=cosαcosβ+sinαsinβ.
(2)∵0<α<
,cos(π 2
+α)=π 4
,∴1 3
<α+π 4
<π 4
,∴sin(α+π 2
)=π 4
=1-cos2(α+
)π 4
.2 2 3
∵-
<β<0,∴π 2
<π 4
-β<π 4
,∵cos(3π 4
-π 4
)=β 2
,∴sin(3 3
-π 4
)=β 2
=1-cos2(
-π 4
)β 2
.6 3
∴cos(α+
)=cos[(β 2
+α)-(π 4
-π 4
)]=cos(β 2
+α)cos(π 4
-π 4
)+sin(β 2
+α)sin(π 4
-π 4
)β 2
=
×1 3
+3 3
×2 2 3 6 3
=
.5 3 9