问题
解答题
求sin210°+cos240°+sin10°cos40°的值.
答案
(解法1)因为40°=30°+10°,于是原式=sin210°+cos2(30°+10°)+sin10°cos(30°+10°)=sin210°++sin10°·(
cos10°-
sin10°)=
(sin210°+cos210°)=
.
(解法2)设x=sin210°+cos240°+sin10°cos40°,y=cos210°+sin240°+cos10°sin40°.则x+y=1+1+sin10°cos40°+cos10°sin40°=2+sin50°=2+cos40°,x-y=cos80°-cos20°-=-sin50°-
=-cos40°-
.因此2x=
,故x=