问题 填空题

以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A、B两点,则线段AB的最小值是     

答案

解:

∵四边形CDEF是正方形,

∴∠OCD=∠ODB=45°,∠COD=90°,OC=OD,

∵AO⊥OB,

∴∠AOB=90°,

∴∠CAO+∠AOD=90°,∠AOD+∠DOB=90°,

∴∠COA=∠DOB,

∵在△COA和△DOB中

∴△COA≌△DOB,

∴OA=OB,

∵∠AOB=90°,

∴△AOB是等腰直角三角形,

由勾股定理得:AB==OA,

要使AB最小,只要OA取最小值即可,

根据垂线段最短,OA⊥CD时,OA最小,

∵正方形CDEF,

∴FC⊥CD,OD=OF,

∴CA=DA,

∴OA=CF=1,

即AB=

单项选择题
选择题