问题 填空题
已知函数f(x)=
x2
1+x2
,则f(1)+f(2)+f(3)+f(4)+f(5)+f(
1
2
)+f(
1
3
)+f(
1
4
)+f(
1
5
)=______.
答案

∵f(x)=

x2
1+x2

∴f(x)+f(

1
x
)=
x2
1+x2
+
1
x2
1+(
1
x
)2
=
x2
1+x2
+
1
1+x2
=
1+x2
1+x2
=1

∴f(1)=

1
2

即f(1)+f(2)+f(3)+f(4)+f(5)+f(

1
2
)+f(
1
3
)+f(
1
4
)+f(
1
5
)=
1
2
+
4[f(2)+f(
1
2
)]=
1
2
+4
=
9
2

故答案为:

9
2

问答题
名词解释