问题
选择题
已知函数f(x)=3-2|x|,g(x)=x2-2x,构造函数y=F(x),定义如下:当f(x)≥g(x)时,F(x)=g(x);当f(x)<g(x)时,F(x)=f(x),那么F(x)( )
|
答案
在同一坐标系中先画出f(x)与g(x)的图象,
当f(x)<g(x)时,F(x)=f(x),表示f(x)的图象在g(x)
的图象下方就去f(x)的图象,然后根据定义画出F(x),就容易看出F(x)有最大值,无最小值
当x<0时,由
得x=2+f(x)=3+2x g(x)=x2-2x
(舍)或x=2-7 7
此时F(x)的最大值为:7-2
.7
故选B.