问题
解答题
已知函数f(x)=sin(ωx+φ),其中ω>0,|φ|<
(I)若cos
(Ⅱ)在(I)的条件下,若函数f(x)的图象的相邻两条对称轴之间的距离等于
|
答案
(I)由cos
cosφ-sinπ 4
sinφ=0得cos3π 4
cosφ-sinπ 4
sinφ=0π 4
即cos(
+φ)=0又|φ|<π 4
,∴φ=π 2 π 4
(Ⅱ)解法一:由(I)得,f(x)=sin(ωx+
)依题意,π 4
=T 2
又T=π 3
,故ω=3,∴f(x)=sin(3x+2π ω
)π 4
函数f(x)的图象向左平移m个单位后所对应的函数为g(x)=sin[3(x+m)+
]g(x)是偶函数当且仅当3m+π 4
=kπ+π 4
(k∈Z)即m=π 2
+kπ 3
(k∈Z)从而,最小正实数m=π 12 π 12
解法二:由(I)得,f(x)=sin(ωx+
),依题意,π 4
=T 2
又T=π 3
,故ω=3,∴f(x)=sin(3x+2π ω
)π 4
函数f(x)的图象向左平移m个单位后所对应的函数为g(x)=sin[3(x+m)+
],g(x)是偶函数当且仅当g(-x)=g(x)对x∈R恒成立π 4
亦即sin(-3x+3m+
)=sin(3x+3m+π 4
)对x∈R恒成立.∴sin(-3x)cos(3m+π 4
)+cos(-3x)sin(3m+π 4
)=sin3xcos(3m+π 4
)+cos3xsin(3m+π 4
)π 4
即2sin3xcos(3m+
)=0对x∈R恒成立.∴cos(3m+π 4
)=0π 4
故3m+
=kπ+π 4
(k∈Z)∴m=π 2
+kπ 3
(k∈Z)从而,最小正实数m=π 12 π 12