问题 解答题
已知O为坐标原点,
OA
=(2cos2x,1)
OB
=(1,
3
sin2x+a)
(x∈R,a∈R,a是常数),若y=
OA
OB

(1)求y关于x的函数关系式f(x);
(2)若f(x)的最大值为2,求a的值;
(3)利用(2)的结论,用“五点法”作出函数f(x)在长度为一个周期的闭区间上的简图,并指出其单调区间.
答案

(1)∵

OA
=(2cos2x,1),
OB
=(1,
3
sin2x+a)

y=

OA
OB
=2cos2x+
3
sin2x+a

(2)由(1)得y=2cos2x+

3
sin2x+a

=1+cos2x+

3
sin2x+a

=cos2x+

3
sin2x+a+1

=2(

1
2
cos2x+
3
2
sin2x)+a+1

=2(sin

π
6
cos2x+cos
π
6
sin2x)+a+1

=2sin(2x+

π
6
)+a+1

sin(2x+

π
6
)=1时,ymax=2+a+1=3+a

又∵ymax=2

∴3+a=2

∴a=-1

(3)由(2)得,y=2sin(2x+

π
6
)

增区间是:[-

π
3
+kπ,
π
6
+kπ](k∈Z),

减区间是:[

π
6
+kπ,
3
+kπ](k∈Z).

选择题
填空题