问题
填空题
若
|
答案
∵
=a b+c
=b c+a
,a+c a+b+2c
∴
=a+b a+b+2c
,a+c a+b+2c
∴b=c,
∴
=a 2b
,b b+a
∴
•1 2
=a b
,1 1+ a b
即(
)2+a b
-2=0,a b
解得
=1或-2.a b
故a:b:c=1:1:1或-2:1:1.
故答案为:1:1:1或-2:1:1.
若
|
∵
=a b+c
=b c+a
,a+c a+b+2c
∴
=a+b a+b+2c
,a+c a+b+2c
∴b=c,
∴
=a 2b
,b b+a
∴
•1 2
=a b
,1 1+ a b
即(
)2+a b
-2=0,a b
解得
=1或-2.a b
故a:b:c=1:1:1或-2:1:1.
故答案为:1:1:1或-2:1:1.