问题 选择题

在梯形ABCD中,AD∥BC,对角线AC和BD交于点O,下列条件中,能判断梯形ABCD是等腰梯形的是【   】

A.∠BDC =∠BCD

B.∠ABC =∠DAB

C.∠ADB =∠DAC

D.∠AOB =∠BOC

答案

答案:C

题目分析:根据等腰梯形的判定,逐一作出判断:

A.由∠BDC =∠BCD只能判断△BCD是等腰三角形,而不能判断梯形ABCD是等腰梯形;

B.由∠ABC =∠DAB和AD∥BC,可得∠ABC =∠DAB=900,是直角梯形,而不能判断梯形ABCD是等腰梯形;

C.由∠ADB =∠DAC,可得AO=OD,由AD∥BC,可得∠ADB =∠DBC,∠DAC =∠ACB,从而得到∠DBC =∠ACB,所以OB=OC,因此AC=DB,根据对角线相等的梯形是等腰梯形可判定梯形ABCD是等腰梯形;

D.由∠AOB =∠BOC只能判断梯形ABCD的对角线互相垂直,而不能判断梯形ABCD是等腰梯形。

故选C。

判断题
单项选择题