问题 解答题

函数f(x)对任意的a、b∈R,都有f(a+b)=f(a)+f(b)-1,并且当x>0时,f(x)>1.

(1)求证:f(x)是R上的增函数;

(2)若f(4)=5,解不等式f(3m2-m-2)<3.

答案

(1)证明见解析(2)解集为(-1,

(1)设x1,x2∈R,且x1<x2,

则x2-x1>0,∴f(x2-x1)>1.                                            2分

f(x2)-f(x1)=f((x2-x1)+x1)-f(x1)

=f(x2-x1)+f(x1)-1-f(x1)=f(x2-x1)-1>0.                                     5分

∴f(x2)>f(x1).

即f(x)是R上的增函数.                                          7分

(2)∵f(4)=f(2+2)=f(2)+f(2)-1=5,

∴f(2)=3,                                              10分

∴原不等式可化为f(3m2-m-2)<f(2),

∵f(x)是R上的增函数,∴3m2-m-2<2,                                 12分

解得-1<m<,故解集为(-1, ).                    14分

多项选择题
单项选择题