问题
填空题
设圆x2+y2-4x+2y-11=0的圆心为A,点P在圆上,则PA的中点M的轨迹方程是__________.
答案
x2+y2-4x+2y+1=0
将x2+y2-4x+2y-11=0配方,得(x-2)2+(y+1)2=16,则圆心A(2,-1),设PA的中点M(x,y),则P(2x-2,2y+1),代入方程x2+y2-4x+2y-11=0,
化简,得x2+y2-4x+2y+1=0.
设圆x2+y2-4x+2y-11=0的圆心为A,点P在圆上,则PA的中点M的轨迹方程是__________.
x2+y2-4x+2y+1=0
将x2+y2-4x+2y-11=0配方,得(x-2)2+(y+1)2=16,则圆心A(2,-1),设PA的中点M(x,y),则P(2x-2,2y+1),代入方程x2+y2-4x+2y-11=0,
化简,得x2+y2-4x+2y+1=0.