问题 单项选择题

设a,b是两个非零向量,则下面说法正确的是()。

A.若|a+b|=|a|-|b|,则a⊥b

B.若a⊥b,则|a+b|=|a|-|b|

C.若|a+b|=|a|-|b|,则存在实数λ,使得a=λb

D.若存在实数λ,使得a=λb,则|a+b|=|a|-|b|

答案

参考答案:C

解析:利用排除法可得选项C是正确的,∵|a+b|=|a|-|b|,则a,b共线,即存在实数λ,使得a=λb。如选项A:|a+b|=|a|-|b|时,a,b可为异向的共线向量;选项B:若a⊥b,由正方形得|a+b|=|a|-|b|不成立;选项D:若存在实数λ,使得a=λb,a,b可为同向的共线向量,此时显然|a+b|=|a|-|b|不成立。

单项选择题 共用题干题
解答题