问题
选择题
已知函数f(x)=lg|x|,x∈R且x≠0,则f(x)是( )
A.奇函数且在(0,+∞)上单调递增
B.偶函数且在(0,+∞)上单调递增
C.奇函数且在(0,+∞)上单调递减
D.偶函数且在(0,+∞)上单调递减
答案
答案:B
f(-x)=lg|-x|=lg|x|=f(x),故函数f(x)是偶函数,当x>0时,f(x)=lgx,故f(x)在(0,+∞)上单调递增,故选B.
已知函数f(x)=lg|x|,x∈R且x≠0,则f(x)是( )
A.奇函数且在(0,+∞)上单调递增
B.偶函数且在(0,+∞)上单调递增
C.奇函数且在(0,+∞)上单调递减
D.偶函数且在(0,+∞)上单调递减
答案:B
f(-x)=lg|-x|=lg|x|=f(x),故函数f(x)是偶函数,当x>0时,f(x)=lgx,故f(x)在(0,+∞)上单调递增,故选B.