求函数y=cos2x+sinxcosx的值域.
y=cos2x+sinxcosx=
+1+cos2x 2
sin2x=1 2
(sin2x+cos2x)+1 2 1 2
=
(2 2
sin2x+2 2
cos2x)+2 2
=1 2
sin(2x+2 2
)+π 4
,因为sin(2x+1 2
)∈[-1,1]π 4
所以原函数的值域为[
-1 2
,2 2
+1 2
]2 2
求函数y=cos2x+sinxcosx的值域.
y=cos2x+sinxcosx=
+1+cos2x 2
sin2x=1 2
(sin2x+cos2x)+1 2 1 2
=
(2 2
sin2x+2 2
cos2x)+2 2
=1 2
sin(2x+2 2
)+π 4
,因为sin(2x+1 2
)∈[-1,1]π 4
所以原函数的值域为[
-1 2
,2 2
+1 2
]2 2