问题
填空题
若点A(a,0),B(0,b),C(1,-l)(a>0,b<0)三点共线,则a-b的最小值为44.
答案
解析:∵A、B、C三点共线,
∴kAB=kAC,即
=b-0 0-a -1-0 1-a
∴
-1 a
=11 b
∴a-b=(a-b)(
-1 a
)=1-1 b
-b a
=2+[(-a b
)+(-b a
)]≥2+2=4(当a=-b=2时取等号).a b
故答案为:4.