问题 解答题

已知f(x)=2+log3x(1≤x≤9),求函数g(x)=[f(x)]2+f(x2)的最大值与最小值.

答案

由f(x)的定义域为[1,9]可得g(x)的定义域为[1,3],

又g(x)=(2+log3x)2+(2+log3x2)=(log3x+3)2-3,

∵1≤x≤3,∴0≤log3x≤1.

∴当x=1时,g(x)有最小值6;

当x=3时,g(x)有最大值13.

单项选择题
单项选择题