问题
选择题
已知(x2+y2)(x2+y2+2)-8=0,则x2+y2的值是( )
A.-4
B.2
C.-1或4
D.2或-4
答案
设t=x2+y2,则有t(t+2)-8=0
解得t=2或-4,又∵t=x2+y2≥0
∴t=x2+y2=2;
故选B.
已知(x2+y2)(x2+y2+2)-8=0,则x2+y2的值是( )
A.-4
B.2
C.-1或4
D.2或-4
设t=x2+y2,则有t(t+2)-8=0
解得t=2或-4,又∵t=x2+y2≥0
∴t=x2+y2=2;
故选B.