问题
解答题
已知向量
(1)求函数y=f(x)的单调递减区间; (2)若0<θ<
|
答案
(1)∵f(x)=
•a
-b
=2sinxcosx+23
sin2x=sin2x+23
×3 1-cos2x 2
=sin2x-
cos2x+3
=2sin(2x-3
)+π 3
,3
令 2kπ+
≤2x-π 2
≤2kπ+π 3
,k∈z,3π 2
可得 kπ+
≤2x-5π 12
≤2kπ+π 3
,k∈z,11π 12
故函数的减区间为[kπ+
,2kπ+5π 12
],k∈z.11π 12
(2)若0<θ<
,且y=f(x+θ)=2sin[2(x+θ)-π 2
]+π 3
=2sin(2x+2θ-3
)为偶函数,π 3
则有 2θ-
=π 3
,π 2
θ=
.5π 12