问题
解答题
如图所示,AD是△ABC的中线,DF⊥AC,DE⊥AB,垂足分别为F,E,BE=CF.求证:AD平分∠BAC.
答案
证明:如图,∵AD是△ABC的中线,
∴BD=CD.
又∵DF⊥AC,DE⊥AB,
∴∠BED=∠CFD=90°,
∴在Rt△BDE与Rt△CDF中,
,BD=CD BE=CF
∴Rt△BDE≌Rt△CDF(HL),
∴DE=DF.
∴AD平分∠BAC.
如图所示,AD是△ABC的中线,DF⊥AC,DE⊥AB,垂足分别为F,E,BE=CF.求证:AD平分∠BAC.
证明:如图,∵AD是△ABC的中线,
∴BD=CD.
又∵DF⊥AC,DE⊥AB,
∴∠BED=∠CFD=90°,
∴在Rt△BDE与Rt△CDF中,
,BD=CD BE=CF
∴Rt△BDE≌Rt△CDF(HL),
∴DE=DF.
∴AD平分∠BAC.