问题
填空题
设x,y∈R,且满足x-y+2=0,则
|
答案
∵x,y∈R,且满足x-y+2=0,∴y=x+2,
∴
=x2+y2
=x2+(x+2)2
,2(x+1)2+2
∵(x+1)2≥0,∴
≥2(x+1)2+2
,∴2
≥x2+y2
.2
故答案为
.2
设x,y∈R,且满足x-y+2=0,则
|
∵x,y∈R,且满足x-y+2=0,∴y=x+2,
∴
=x2+y2
=x2+(x+2)2
,2(x+1)2+2
∵(x+1)2≥0,∴
≥2(x+1)2+2
,∴2
≥x2+y2
.2
故答案为
.2