问题
填空题
函数y=x3-3x2+5,x∈[-1,3]值域为______.
答案
f′(x)=3x2-6x
令f′(x)=0得x=0或x=2
当-1<x<0时,f′(x)>0;当0<x<2 时,f′(x)<0
当2<x<3时,f′(x)>0,
所以当x=2时,f(x)最小为f(2)=1
又当x=0时f(x)最大为f(0)=5;
所以f(x)的值域为[1,5]
故答案为:[1,5]
函数y=x3-3x2+5,x∈[-1,3]值域为______.
f′(x)=3x2-6x
令f′(x)=0得x=0或x=2
当-1<x<0时,f′(x)>0;当0<x<2 时,f′(x)<0
当2<x<3时,f′(x)>0,
所以当x=2时,f(x)最小为f(2)=1
又当x=0时f(x)最大为f(0)=5;
所以f(x)的值域为[1,5]
故答案为:[1,5]