问题
解答题
已知圆C的方程为:x2+y2+2x-4y-20=0,
(1)若直线l1过点A(2,-2)且与圆C相切,求直线l1的方程;
(2)若直线l2过点B(-4,0)且与圆C相交所得的弦长为8,求直线l2的方程.
答案
圆C的方程化为:(x+1)2+(y-2)2=25,圆心C(-1,2),半径r=5,
(1)易知A(2,-2)在圆C上,则l1⊥AC,可求得kAC=-
,∴kl1=4 3
;3 4
则直线l1的方程为:y+2=
(x-2).即3x-4y-14=0 3 4
(2)设圆心到直线l2的距离为d,
∵弦长为8,又圆的半径r=5,∴d=3
①若l2斜率不存在,∵过点B(-4,0),即l2方程为x=-4,
此时 圆心C(-1,2)到l2的距离为3,所以方程x=-4符合题意;
②若l2斜率存在,∵过点B(-4,0),
设l2方程为y=k(x+4),即kx-y+4k=0,
∵圆心C(-1,2)到l2的距离为3,
∴
=3,解得k=-|-k-2+4k| k2+1 5 12
此时l2方程为:5x+12y+20=0
综上得直线l2方程为:x+4=0或5x+12y+20=0;