问题
填空题
若为y=sin(2x+α)+cos(2x+α)奇函数,则最小正数α的值为______.
答案
解因为y=sin(2x+α)+cos(2x+α)为奇函数,
且y=sin(2x+α)+cos(2x+α)=
sin(2x+α+2
)是奇函数,π 4
则x=0时y=0 所以
sin(α+2
)=0且α是正数,π 4
所以α+
=πα=π 4
,3π 4
故答案为α=
.3π 4
若为y=sin(2x+α)+cos(2x+α)奇函数,则最小正数α的值为______.
解因为y=sin(2x+α)+cos(2x+α)为奇函数,
且y=sin(2x+α)+cos(2x+α)=
sin(2x+α+2
)是奇函数,π 4
则x=0时y=0 所以
sin(α+2
)=0且α是正数,π 4
所以α+
=πα=π 4
,3π 4
故答案为α=
.3π 4